MATISSE:
MODELISATION AVANCEEE de la TERRE pour l ’IMAGERIE et la SIMULATION des SCENES et de leur ENVIRONNEMENT

« Advanced Earth Modelisation For Imagery and Scene Simulation »

VERSION 1.1

P. Simoneau
Applied and Theoretical Optical Department
Goal of MATISSE: Radiance images

- Observed Radiance
- Atmospheric Emission and Scattering
- Ground reflection and emission
- Cloud Scattering
- Target Signature Propagation
- Atmospheric variability

\[P(x,y,z) \]
\[T(x,y,z) \]
\[[H_2O](x,y,z) \]
Why MATISSE?

- Coherent radiance images
 - target detection studies
 - contrast of natural background

- Atmospheric spatial variability computation

- New functionalities

- Insertion of the code in computation chains
Why Matisse?
Atmospheric Spatial variability (prototype results)
Description of the code

• **Core**
 – General method
 – Transmission model
 – Source function computation

• **Natural backgrounds**
 – Ground modelisation
 – Cloud modelisation

• **Target signature transmission**

• **Language and computer**

• **Secondary Data Bases**
General method
Source functions computation

Atmospheric profiles

Optical parameters

Total Source Functions

Atmospheric Transmission Meeting 06/06/2001
General method
Source functions propagation

⇒ all the radiative parameters (sources functions, surfaces, radiances, absorption coefficients, ...) are stored
Application

Visée n°1

Visée n°2
Need to use Beer’s law

→ LBL method

→ K distribution method
Transmission model
CK model (1/3)

• Advantages
 – Beer’s law
 – molecular absorption / aerosols scattering coupling

• Method
 Atmospheric profiles ➔ LBL model
 (Lpma/Snecma/Onera) ➔ CK profiles stored in a Data Base

 Hitran 96 data base

• Characteristics
 – spectral range (MATISSE 1.1) : 3 - 13 µm
 – spectral resolution : 5 cm$^{-1}$
Transmission model
CK model (2/3)

US Standard / 0-15km / ZA = 45°
Transmission model
CK model (3/3)

US Standard / 0-15km / ZA = 45°
Source functions computations (1/2)

\[J_{\text{tot}}(\theta, \varphi) = J_{\text{ss}}(\theta, \varphi) + J_{\text{th}} + J_{\text{ms}}(\theta, \varphi) \]

Two ‘horizontal’ spatial resolutions

→ High resolution (0.25° x 0.25°)
 – Single scattering: \(J_{\text{ss}}(\theta, \varphi) \)
 – Thermal emission: \(J_{\text{th}} \)

→ Low resolution (5° x 5°)
 – Multiple scattering: \(J_{\text{ms}}(\theta, \varphi) \)
 → RTRN21 (Nakajima): DOM + TMS

Atmospheric Transmission Meeting 06/06/2001
Source functions computations (2/2)
Ground description (1/2)

• **Geometrie**
 – WGS84
 – Digital terrain elevation : USGS-GTOPO30 (30 ”)
 – Shadowing and hidden surfaces : OpenGL routine

• **Ground temperature**
 – thermal model

• **Land-use data base**
 – USGS/GLCC + ASTER
Ground description (2/2):
Land use data base construction

- Global Land Cover Database
- Elementary materials reflectance and emissivity Database
- SST annual Database
- Global Elevation Database

- pixel location/ground cover type association
- ground cover types description
- ground cover types characterization
- seasonal data extraction
- adaptation to MATISSE grid

- World map of ground cover types
- Thermo-optical properties of ground cover types
- Sea surface temperature World Map
- Ground Elevation Map

- MATISSE Database

USGS/GLCC
ASTER
ASST
GTOPO30

Atmospheric Transmission Meeting 06/06/2001
Stratocumulus Clouds

- Thickness and shape: statistical generation
- LWC(z): Feddes method
- Vertically homogeneous
- n(r) = constant

Spatial fluctuations: LWC, Δh
Cloud description (2/2) : Radiation

- Radiative transfer : IPA + BRDF

 → Use of RTRN21 (Nakajima)
 - DOM + TMS
 - Plan parallel

 \[
 \text{BRDF}(\Theta_{\text{sol}}, \Theta, \Delta \phi, \sigma, \omega, \tau) \\
 \text{BTDF}(\Theta_{\text{sol}}, \Theta, \Delta \phi, \sigma, \omega, \tau) \\
 \varepsilon(\Theta, \sigma, \omega, \tau)
 \]

- Shadowing and hidden surfaces : OpenGL routine
Target signature transmission
Method

\[p(x,y,z)_i \]
\[t(x,y,z)_i \]
\[[X](x,y,z)_i \]
\[\sigma_1, \sigma_2 \]

LBL model

\[T(\sigma_i) \]

\[+ \]

\[E_{\Delta\sigma} \]

\[I(\sigma,\Omega,p) \]
Target signature transmission
Line by Line / FASCOD3 comparisons

- Nadir viewing: 0 → 100 km
- US STANDARD
Language and computer

• **Language**
 - Main programme: C
 - Routines: C, F90
 - GUI: PV-Waves 6.21
 - Quality approach

• **Computer**
 - SUN Ultra 80
 - 2 processors ULTRA SPARC 450MHZ
 - MEMORY: 2 Go
 - Disk storage: 40 Go
Secondaries Data Bases

Atmospheric Profiles 1D,2D (>1800)

Atmospheric profiles 3D 0.25° x 0.25°

Aerosols profiles (GADS) 5° x 5°

MATISSE

- DTED (30'')
- Land-use

Radiative transfer
- CK parameters
- Line by line data
- Solar spectrum

Clouds BRDF, BTDF, ε

Atmospheric Transmission Meeting 06/06/2001
MATISSE 1.1 : Summary (1/2)

- Coherent radiance images
- Atmospheric radiative transfer: CK / 3-13μm / $\frac{\delta \sigma}{\sigma} = 5 \text{ cm}^{-1}$
- Aerosol + molecule scattering: (DOM for MS)
- Atmospheric Spatial Variability for all the LOS
- Clouds Emission and Scattering: Scu / IPA + (BRDF, ε)
- Ground Emission and Reflectance: $T_{\text{ground}} + \text{BRDF} + \varepsilon$
MATISSE 1.1 : Summary (2/2)

- 3D Ground (DTED) + cloud shadowing
- Target signature propagation
- GUI
- High resolution spatial Variability
- Refraction along **only one** line of sight

Release of MATISSE 1.1 : May 2002
Future works

- Sea surface model
- Cirrus clouds
- CK ’s spectral domain and resolution
- Adjacencies effects
- NLTE
- Refraction for all the LOS in the image
- Coupling with high spatial resolution radiative codes
<table>
<thead>
<tr>
<th>Name</th>
<th>Role and Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Simoneau</td>
<td>Project manager</td>
</tr>
<tr>
<td>L. Labarre</td>
<td>Development manager, architecture, GUI, OpenGL</td>
</tr>
<tr>
<td>R. Berton</td>
<td>Geometry, cloud generation, high resolution spatial variability, refraction</td>
</tr>
<tr>
<td>K. Caillault</td>
<td>Ground thermal model, high resolution spatial variability</td>
</tr>
<tr>
<td>G. Durand</td>
<td>Atmospheric source function computations</td>
</tr>
<tr>
<td>T. Huet</td>
<td>CK development, target signature transmission</td>
</tr>
<tr>
<td>C. Malherbe</td>
<td>Cloud radiative transfer</td>
</tr>
<tr>
<td>C. Miesch</td>
<td>Land use data base construction</td>
</tr>
</tbody>
</table>

Matisse 1.1 is sponsored by the ‘Délégation Générale de l’Armement’
Multiple scattering source function computation

- $5^\circ \times 5^\circ$ horizontal resolution
- Only one type of aerosol
Multiple scattering source function computation