MATISSE : version 1.4 and future developments

Advanced Earth Modeling for Imaging and the Simulation of the Scenes and their Environment

Pierre Simoneau, Karine Caillault, Sandrine Fauqueux, Thierry Huet, Jean Claude Krapez, Luc Labarre, Claire Malherbe, Christophe Miesch, Antoine Roblin, Bernard Rosier
For optronic systems specification and preliminary design

- Backgrounds radiation spatial variability (ground, clouds, atmosphere)
- Global databases of atmospheric and background environments (force projection)
- Target / background contrasts, hot plumes propagation
- Quality management and V&V

MATISSE History

1995
- MATISSE Proto
 - LOS (moderate resolution Band Model)
 - atmospheric variability
 - atmospheric profiles databank

2000
- MATISSE-v1.1
 - imagery mode
 - CK model for propagation
 - heterogeneous clouds (Sc)
 - ground thermal model
 - HSR transmission (LOS)

2002
- MATISSE-v1.2
 - LOS mode (MSR)
 - Cirrus clouds
 - New ground thermal model
 - HSR thermal emission (LOS)

2004
- MATISSE-v1.3
 - New refraction models

2005
- MATISSE-v1.4
 - Maritime Boundary Layer (MBL) mode
 - improved rendering
 - computation speed

2006
MATISSE-v1.4: Overview

Atmospheric variability

Observed radiance

Cloud emission scattering

Atmospheric extinction

Ground emission and reflection

Atmospheric emission and scattering
MATISSE-v1.4: 4 computation modes

« Imagery » mode

Radiance and transmission Images / $\Delta \sigma = 5$ cm$^{-1}$

Direct computation

LOS mode

API

Radiance and Transmission along a LOS / $\Delta \sigma = 5$ cm$^{-1}$

HSR mode

High spectral resolution thermal radiance and transmission
Atmospheric emission and scattering

- Atmospheric emission and absorption → CK model
 \[765 \to 3300 \text{ cm}^{-1} (3 \to 13 \text{ µm}) / \delta \sigma = 5 \text{ cm}^{-1} / \text{step 5 cm}^{-1} \]

- Atmospheric scattering → Discrete Ordinate method

- Atmospheric data
 → 1D profiles database : AFRL + TIGR 1760 profiles
 → aerosols
 - GADS climatology database (D’Almeida & al) ⇒ aerosols variability
 - “Modtran” aerosols : Rural / Urban / Fog / Maritime / Tropospheric
 - AP (DRDC collaboration) : Marine Boundary Layer Aerosols
Atmospheric variability

2D database
one profile for each latitude band

3D database
one profile at each grid point

Aerosol database (GADS)
horizontal spatial resolution: 5° × 5°

User defined spatial resolution

DOTA
Two options

1/ Partial coverage of Sc clouds
 - cloud shape generator
 - IPA + (BRDF, BTDF, ε)
 use RTRN21 → databank
 - Radiance texture model (PSD)

⇒ cloud radiance spatial variability
⇒ but time consuming

2/ Total coverage of Sc or Ci clouds (no horizontal variability)
 • direct radiative computation
Ground data sets and radiance

- DTED → 30” global coverage
 3” Europe

- Land use / (r,ε) → global 30”
 (IGBP-DISCover + ASTER)

- Ground thermal model
 - 1D, Periodic radiative energy deposit
 → Fourier Method
 - Solar energy deposit : 2 streams model
 - ASST (sea temperature)

- Radiance texture model
 - uses PSD
Other functionalities

- Multiple scattering (On/off)
- Sensor spectral characteristics
- Intermediate images computation along the LOS (imagery mode)
Spectral radiance and transmission
(or integrated with apparatus function)

$765 \rightarrow 3300 \text{ cm}^{-1}$ (3 \rightarrow 13 μm) / $\delta \sigma = 5 \text{ cm}^{-1}$ / step 5 cm$^{-1}$ / CK model
LOS modes
Maritime Boundary Layer (DRDC)

- Propagation along a LOS in the Marine Boundary Layer
 - New maritime aerosol model AP (DRDC)
 - User atmospheric profile generator
 - High accuracy path modeling
 - Multiple path propagation

MBL ≈ 30 m
LOS Modes
High spectral resolution (LBL)

\[765 \rightarrow 3300 \text{ cm}^{-1} (3 \rightarrow 13 \text{ \mu m}) / \delta \sigma = \approx 10^{-2} - 10^{-4} \text{ cm}^{-1}\]

2 independent modes: \(\rightarrow\) all molecules
\(\rightarrow\) all molecules excepted H\(_2\)O and CO\(_2\)

- All MATISSE thermodynamic profiles (including 3D profiles)
- No aerosols
- No ground radiation
• Workstations
 – SUN / Solaris 2.8
 – IBM / AIX 4.3

• PC Windows (in beta test)
 – Light version (1 DVD) ⇒ limited functionalities
 • LOS only
 • No large databases (no GADS / no 3D thermodynamic scene)
 • LBL mode
 • User’s profiles generator
Results
Spectral radiance images
(or integrated over sensor bandwidth)

- 15/06/2005 12h00 UTC
- US Std / Rural 23 km
- long. / lat. : 2.5 E / 48.6 N
- observer altitude / elevation : 300 km / -90°
- FOV : 80° x 80°
- 40000 spatial elements

- Total computation time for 1 wavelength (1250 cm\(^{-1}\)) ~ 7'
- Thermal model computation time ~ 3.5' (# ground facets ~ 10\(^6\))
Spectral radiance and transmission along a LOS
Future works: MATISSE-v2.0
(end 2008)
MATISSE-v2.0: main functionalities

- Spatial variability at high resolution (metric)
- Background physical properties generators
- Multi-resolution approach for sea and land
- Sea radiance spatial variability models
 - Sub-metric variability of the radiance
 - Solar glint effect
 - Time dependence
Solar glint

\[\Omega_{\text{sun}} \]

\[\Theta_{\text{sun}} \]

\[\Theta_{\text{obs}} \]

\[512 \times 512 \]
http://matisse.onera.fr